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As a first step in building a principled, geo-
metrically informed, high-dimensional data anal-
ysis capability, we have designed a classification
scheme which can approximately factor out arbi-
trary invariances. The scheme uses first and sec-
ond derivatives of functions that describe mani-
folds to which classification should be invariant.
We have tested the scheme on a face recogni-
tion task using free software from CSU [1] which
lets us make statistically meaningful performance
comparisons with existing techniques.
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A geometrical view of our approach which im-
proves on tangent distance methods [2] for trans-
lation, scaling, and rotation invariance. Each µk

represents the mean of a class, the surrounding
ellipses represent the pooled within-class vari-
ance Cw, which is estimated from training data.
The curvesτ parameterized byθk represent the
orbits of the known transforms to which the clas-
sification should be invariant. The Vkθk represent
tangent approximations to those orbits.

The geometrical viewfigure illustrates the in-
tuition behind our modified within-class variance

Ck which combines the data-derivedCw and the
effective variance termCτ. We deriveCτ in a prin-
cipled way from tangent approximations to the or-
bits (knowna priori) by balancing the conflicting
goals of de-emphasizing variations in invariant
directions while remaining within the region of
validity of the tangent approximation (estimated
in terms of second derivatives). The results are
quite good: we have the best three algorithms in
comparison with the thirteen implemented in the
CSU archive.
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Plots of Gaussian approximations to the distribu-
tions of rank 1 recognition rates for each algo-
rithm: note that the three best performing algo-
rithms are variants of our approach.

The Rank 1 comparisonsfigure was con-
structed using the following Monte Carlo experi-
ment. An imageI0 was chosen, followed by 160
other images, exactly one of which (I

′
) was a dif-

ferent image of the individual pictured inI0. A
distance vector wass computed and the distances
were used to rank the 160 images. The trial was a
success ifI

′
was the closest (rank 1) image. The

fraction of successes was recorded over 160 such
trials, and a histogram was constructed by repeat-
ing this entire procedure 10,000 times. The figure
presented here represents Gaussian distributions
fitted to these histograms.

Further details are available in a short confer-
ence proceedings article [3] and a detailed article
[4] which has recently been published in a spe-
cial issue ofThe Journal of Computational and
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